II B.Tech - I Semester –Regular / Supplementary Examinations DECEMBER 2022

NETWORK THEORY AND ANALYSIS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks
UNIT-I					
1	a)	Analyze a series RLC excited by sinusoidal voltage to obtain the phase relation between applied voltage and current.	L4	CO3	6 M
	b)	The voltage and a current in a circuit are given $v=150 \ge 30^{\circ}$ V, $I=2 \ge -15^{\circ}$ A. If the circuits works at 50Hz supply, solve for impedance, resistance, reactance, power factor and power consumed.	L3	CO2	8 M
OR					
2	a)	Explain the following: (i) Average Voltage (ii) Power factor (iii) Form factor (iv) Apparent power (v) Reactive power (vi) Power triangle	L2	CO1	6 M
	b)	A sine wave generator supplies a 500 Hz, 10 V_{rms} to a 2k Ω resistor in series with a 0.1µF capacitor. Solve for parameters, the total impedance Z, current I, phase angle θ ,	L3	CO3	8 M

