II B.Tech - I Semester -Regular / Supplementary Examinations DECEMBER 2022

NETWORK THEORY AND ANALYSIS (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries
14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.
BL-Blooms Level \quad CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Analyze a series RLC excited by sinusoidal voltage to obtain the phase relation between applied voltage and current.	L4	CO 3	6 M
	b)	The voltage and a current in a circuit are given $v=150 \angle 30^{\circ} \mathrm{V}, \quad \mathrm{I}=2 \angle-15^{\circ} \mathrm{A}$. If the circuits works at 50 Hz supply, solve for impedance, resistance, reactance, power factor and power consumed.	L3	CO 2	8 M
OR					
2	a)	Explain the following: (i) Average Voltage (ii) Power factor (iii) Form factor (iv) Apparent power (v) Reactive power (vi) Power triangle	L2	CO1	6 M
	b)	A sine wave generator supplies a 500 Hz , $10 \mathrm{~V}_{\mathrm{rms}}$ to a $2 \mathrm{k} \Omega$ resistor in series with a $0.1 \mu \mathrm{~F}$ capacitor. Solve for parameters, the total impedance Z, current I, phase angle θ,	L3	CO 3	8 M

		capacitive voltage V_{c} and resistive voltage V_{R}.			
UNIT-II					
3	a)	In the given network, k is closed at $\mathrm{t}=0$ with zero current in the inductor. Find the values of i, $\frac{d i}{d t^{\prime}} \frac{\mathrm{d}^{2} \mathrm{i}}{}{ }^{2}$ at $t=0^{+}$if $\mathrm{R}=8 \Omega$, and $\mathrm{L}=0.22 \mathrm{H}$.	L3	CO 2	7 M
	b)	The circuit shown in Fig. is in steady state with switch K closed. At $\mathrm{t}=0$, the switch is opened. Determine the voltage across the switch, $\mathrm{v}_{\mathrm{k}}, \frac{\mathrm{d} \mathrm{v}_{\mathrm{k}}}{\mathrm{dt}}$, at $\mathrm{t}=0^{+}$.	L3	CO 2	7 M
OR					
4	a)	Consider the RC circuit shown in Fig. Find $\mathrm{i}(\mathrm{t})$ by assuming circuit is initially relaxed.	L4	CO 4	7 M

	b)	Using the Thevenin's theorem, find the current i through $\mathrm{R}=2 \Omega$.	L3	CO 2	7 M
UNIT-IV					
7	a)	Determine the admittance parameters of the T network shown in Fig.	L4	CO3	7 M
	b)	Find the z parameters of the circuit shown in the fig. Then compute the current in a 4Ω load if a $24 \angle 0^{\circ} \mathrm{V}$ source is connected at the input port.	L4	CO3	7 M

	b)	For the circuit shown in figure find the resonant frequency, quality factor and bandwidth for the circuit. Determine the change in Q and the bandwidth if R is changed from $\mathrm{R}=2 \Omega$ to $\mathrm{R}=0.4 \Omega$	L4	CO 4	7 M
OR					
10 a)		For the circuit as shown in Fig. find the resonant frequency and the corresponding current in each branch.	L4	CO 4	7 M
	b)	Find the value of R_{L} for which the circuit as shown in Fig. is resonant.	L4	CO4	7 M

